How to Get the Recommender Out of the Lab?

نویسندگان

  • Jérôme Picault
  • Myriam Ribière
  • David Bonnefoy
  • Kevin Mercer
چکیده

A personalised system is a complex piece of software made of many interacting parts, from data ingestion to presenting the results to the users. A plethora of methods, tools, algorithms and approaches exist for each piece of such a system: many data and metadata processing methods, many user models, many filtering techniques, many accuracy metrics, many personalisation levels. . . In addition, a realworld recommender is a piece of an even larger and more complex environment over which there is little control: often it is part of a larger application introducing constraints for the design of the recommender, e.g. the data may not be in a suitable format, or the environment may impose some architectural or privacy constraints. This can make the task of building such a recommender system daunting. This chapter intends to be a guide to the design, implementation and evaluation of personalised systems. It will present the different aspects that must be studied before the design is even started, and how to avoid pitfalls, in a hands-on approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

A clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting

This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011